

Tips for Optimization of Peptide Separation

Separation Method Optimization of "Difficult-to-Separate" Peptides

(S140922AE)

Factors to Be Considered on Method Optimization of Peptides and Proteins

Column	Combination of functional group and the pore diameter \longrightarrow Choose optimal combination by molecular weight and hydrophobicity of pentides	
	and proteins.	
	Senerally, a column with large pore size and low surface hydrophobicity is are suitable for a large molecules.	
Mobile phase	Gradient elution with 0.1% TFA aq /acetonitrile system as first choice. → Change 1) concentration of TFA, 2) acid species and/or pH if a sample is mixtur of compounds with various ionic characteristics.	
	Adjust the gradient conditions	
	2-propanol might be effective for separation of large proteins	
Temperature	Effective for changing separation selectivity or improving peak shape. However, usable temperature range is limited by column durability.	
	(strongly acidic conditions + heating will accelerate the elimination of functional groups =short retention time and/or increase of unfavorable secondary interaction between the packing material and sample)	

High durability column, Triart, can offer wider usable temperature range. Temperature can be used as a tool for method optimization

High Performance and Excellent Durability YMC-Triart C18

Specifications

Base	Organic / inorganic hybrid silica
Bonding	Trifunctional
Functional group	C18
Particle size	1.9 μm, 3 μm, 5 μm
Pore size	12 nm
Carbon content*	20%
Endcapping	Yes
pH range	1~12
Usable temperature range (upper limit)	70°C for pH 1-7 50°C for pH 7-12

Excellent durability

*Containing 8% carbon for hybrid silica base material

Optimization of Antimicrobial Peptides Separation Structure

Optimization of Antimicrobial Peptides Separation

YMC

Effect of Column Temperature

Column	: YMC-Triart C18 (1.9 μm, 12 nm),
	: 50 X 2.0 mml.D.
Eluent	: A) water/TFA (100/0.1)
	B) acetonitrile/TFA (100/0.1)
	25-45%B (0-5 min)
Flow rate	: 0.4 mL/min
Detection	: 220 nm

At 70°C, resolution of peak1, 3 and peak2 are improved.

Optimize other conditions

Optimization of Antimicrobial Peptides Separation

Effect of acid type, acid concentration and gradient conditions (at 70°C)

Optimization of Antimicrobial Peptides Separation

Addition of 2-propanol in a mobile phase

2-propanol is added in the mobile phase, and gradient slope is optimized.

Resolution between peak 1 and 2 is improved while maintaining the similar analysis time.

Separation optimization example of antimicrobial peptide Conclusion

YMC-Triart C18 (1.9 µm, 12 nm), 50 X 2.0 mml.D.

min

Detection

: 220 nm

Concentration and type of acid

Selectivity change provided by other acid type and/or different concentration is expected It is effective when there is a large difference in ionic characteristics of compounds.

Concentration and type of organic solvent

It is effective for improvement of resolution/peak shape to use an organic solvent with stronger elution ability for large molecular weight proteins and proteins with high hydrophobicity.

Column temperature

Changing the column temperature will provide selectivity change as well as peak shape improvement.

In particular, a good separation of proteins whose molecular weight is 10,000 or larger could be obtained under high temperature condition.

YMC-Triart C18, which offers excellent durability even under an elevated temperature condition, is effective for the separation of peptides and proteins.